Cel-T

B.TECH. 4™ SEMESTER EXANIMATION, 2014 B.TECH. 4™ SEMESTER EXANIMATION, 2014

Answers to Short / Objective Answers to Short / Objective Questions

X. A

ix. D

i.B i C iv.D v.D vi.D vii. A viii. B

Ql.
i. B

- - -

B.Tech 4" Semester Examination, 2014
Model Answer

Subject:- ¢ b [‘ et byaded o | DEL Paper Code:- © $™ 110)

Seis (1) / (H)
Answer 2. a)
#include<iostream>
using namespace std;
int recursiveLinearSearch(int array[],int key,int size){
size=size-1;
if(size <0){
return -1;
}
else if(array[size]==key){
return 1;
}
else{
return rccursiveLinearSearch(array,key,size);
y
}
int main() {
cout<<"Enter The Size Of Array: ";
int size;
cin>>size;
int array[size], key,i;
// Taking Input In Array
for(int j=0;j<size;j++){
cout<<"Enter "<<j<<" Element : "

cin>>arrayf[j];

B.Tech 4" Semester Examination, 2014

Model Answer
Subject:- / Paper Code:-
Sets (1) /
}
//Your Entered Array Is

for(int a=0:a<size;a++){
cout<<"array["<<a<<"] ="
cout<<array[a]<<endl;
}
cout<<"Enter Key To Search in Array";
cin>>key;
int result;
resulr=recuxsiveLinearSearch(array,key,size--);
if(result==1){
cout<<"Key Found in Array ";
}
else{
cout<<"Key NOT Found in Array ";
}

return 0;

Answer 2 b.
#include<iostreamn>
using namespace std;
int main()
{

it armstrong=0;num=0 result=0;check;

\\\

B.Tech 4™ Semester Examination, 2014
Model Answer

Subject:- Paper Code:-

Sets (1) /(11—
cout<<"Enter Number (o find it is an Armstrong number?";
cin>>num;
check=num;
for(int i=1 ;num! =0;i++){
armstrong=num%10;
num=num/10;
armstrong-armstrong*armstrong*armst'rong;
result=result+armstrong;’
}
if(result=check){ ¢

cout<<check<<" isan Armstrong Number";

cout<<check<<" is NOT an Armstrong Number";

}
return 0;

Answer 3. a)

Since A and C have subclasses, it would make sense for them to have protected members
(as protected members can be accessed directly in the class where they're created and in
subclasses of that class). The protected members of A could be accessed in A,B,C,D,
and E.
The protected members of C could be accessed in C,D,and E.

Answer 3. b)

B.Tech 4" Semester Examination, 2014
Model Answer

Subject:- Paper Code:-

Sets (1) / (II)

Any private members of C could only be accessed in C, as private members can only be accessed

directly in the class which defines them.
Answer 3. ¢)

Since C has an abstract method, C must be abstract, and since C is the child of A and C is
abstract, A must be abstract. The other classes would need to be concrete so that we could
instantiate objects in this hierarchy.

Answer 3. d)

The first line makes an array of type A. It's possible to make an array of type A, even
though A is abstract. (But it's not possible to put an A object in this array, because we
can't instantiate an abstract class.) The second line is fine; it attempts to instantiate a
concrete class, which is possible and desirable, and it attempts to put it an A container,
which is possible since D is a kind of A. So, this code works just fine.

Answer 3. e)

The first line makes an array of type C. It's possiblg to make this array. The second line
attempts to instantiate a concrete class, B, which is possible. However, it fails in its -
attempt toputaB ina C container, which is impossible because B is not a subclass of C.

Answer 4 a)

The problem is that the assignment in init(), namely x =y, uses the default copy assignment which
simply copies each field from y into the corresponding field of x. This means that the address
stored in y.a is simply copied into x.a, without the array being copied. At the end of init(), the
destructor is called for the local variable y, which causes the array to be deleted. Thus x is left
pointing to an array that is being reclaimed for other use by the program, and those locations in
memory may be written to during the computation. Since p is passed to init() by reference, p is
modified by init() so that p.a refers to the deleted array. Tolgx it, the copy assignment operator
should redefined in A so that the elements of the array are copied, not the array pointer.

class A {

public:

A &operator=(const A &other)
{ for(i=0; i<3;i++) a[i] = other.a[i};

}

Subject:-

B.lech 4" Semester Examination, 2014
Model Answer

Paper Code:-

Sets (1) / (11

Answer 4 b)

ADVANTAGES OF INHERITANCE

1) The most frequent use of inheritance is for deriving classes using existing classes, which
provides reusability. The existing classes remain unchanged. By reusability, development
time of software is reduced.

2) The derived classes extcnlf the propertics of basc classes (o generate more dominant
object.

3) The same base classes can be usalby number of derived classes in class hierarchy,

4) When a class is derived from more than one class, all the derived classes have the same
properties as that of base classes.

DISADVANTAGES OF INHERITANCE

1) Though object oriented programming is frequently propagandized as an answer for
complicated projects, inappropriate use of inheritance makes program more complicated.
2) Invoking member function using objects creates more compiler overheads.

3) In class hierarchy various data elements remains unused, the memory allocated to them
is not utilized.

Answer 5 a)

It is a member function whose calls are dynamically dispatched. That is, given the

declaration of the form

class C {
virtual .. f(..) ..

and a call of the form
D & { (9 I

where the variable x is declared to be of type C, the version of f that is executed depends on
the actual type of the object that x refers to, not necessarily the declared type of x.
Rules for declaring virtual function

The virtual functions should not be static and must be member of a class.

A virtual mnctiorir’nay be declared as tiiend for anoiher class. Object pointer can access
. \

the virtual vva 3 .

/&me&ens'.

Subject:-

B.Tech 4™ Semester Examination, 2014
Model Answer

Paper Code:-

Sets (I) / (1)
Constructor cannot be declared as virtual, but destructor can be declared as virtual.
The virtual function must be defined in public section of the class. It is also possible to
define the virtual function outside the class. In such a case, the declaration is done inside
the class and definition is outside the class. The virtual keyword is used in the declaration
and not in function declarator. ,
It is also possible to return a value from virtual function like other function.
The prototype of virtual function in base class and derived class should be exactly same.
In case miss
match, the compiler neglects the virtual function mechanism and treats them as
overloaded functions.
Arithmetic operation cannot be used with base class pointer.
If a base class contains virtual function and if the same function is not re-defined in the
derived classes. In such a case, the base class function is invoked.
The operator keyword used for operator overloading also supports virtual mechanism.

Answer S b)

If you leave the keyword virtual off , then no dynamic dispatching of the member function

occurs.

In the example above, no matter what the actual type of the object that x refers to is, the

version of f that is called is the one defined in the class C.

Answer 5 ¢)

class A {
public: void f0) { cout <<"As f\n"; }
virtual void g() { cout << "A's g\n"; }

)

class B: public A {

public: void f) { cout <<"B's fn"; }
virtual void g() { cout << "B's g\n"; }

}

void h(A &x)
{ x.£0;

x.80;

int main()
{Bb;

B.Tech 4™ Semester Examination, 2014
Model Answer

Subject:- Paper Code:-

Sets (1) / (11)

h(a);
}
would print
A'sf
B’sg
Answer 6 a)
class A {
public:
int operator==(const A &other) { return 1; }
4
Answer 6 b)

In a child class, in order to override a method from the parent class, the signature of the method
(i.e. parameter and retlirn types) must be identical in the child and the parent classes. In this case,
B's operator== is defined as taking a B parameter, but A's operator== is defined as taking an A
parameter. Thus, this is not an overriding and so the occurrence of == in.procedure f() is always
A's operator==,

Answer 6 ¢)

This can be accomplished by writing f() as a function template, as follows:
template<class T>

void f(T &p, T &q)
{

if (p==q)

cout << "yes\n";
else

cout << "No\n";

}

Answer 7 a)

template<class T>
T sum(T &a, T &b, T &c)

{ return-a+b+e;—-—-- . e

}

Subject:-

B.Tech 4™ Semester Examination, 2014

Model Answer

Sets (I} / (ID

Note the importance of the reference parameters, oth
occur.
Answer 7b)
template<class T>
class myobj {
public:
myobj() { cin>> val; } //not really necessary
myobj operator-+(myobj &m) {
myobj r(*this);
r.val =r.val + m.val;
return r;
}
protected:
T val;
}

Answer 8 a)

#include<iostream.h> u

class A

{

protected :

int i;

public:

AQ

{

cout<<" Constructing default A class"<<endl;
}

A(int a)

{

1=a;

cout<<" Constructing A class "<<endl;
}

~A()

{

cout<<" Destructing A class"<<endl;

}

1

Paper Code:-

erwise dynamic dispatching will not

Subject:-

B.Teeh 4™ Semester Examination, 2014

Model Answer

Sets () / (I1)

class B

{
protected :
int j;
public:
B()

{ .
cout<<" Constructing default B class "<<end|,
}

B(int b)

{

j=b;

8

cout<<" Constructing B class "<<endl;

) ¢

~B()

{

cout<<" Distructing B class"<<endl;

}

)

class C:public A,public B

{ .
protected:

intk; -

public:

CO

{

cout<<" Constructing default derive C class"<<endl;

}

C(int a,int b,int c):A(a),B(b)

{

k=c; // b=i;

cout<<" Constructing C class"<<endl;

}
~C0

{
}

Paper Code:-

- cout<<"\n Destructing -C class"<<endl; -~ -~ - - o

B.Tech 4™ Semester Examination, 2014
Model Answer

Subject:- Paper Code:-

Sets (I) / (I1)

void show()

cout<<"\n A i = "<<i<<endl,
cout<<" B j = "<<j<<endl;
cout<<" C k = "<<k<<endl;
}

i

void main()

{

C d(10,20,30);
d.show();

}

Constructing A class
Constructing B class
Constructing C class

Ai=10
Bj=20
Ck=30

Destructing C class
Destructing B class
Destructing A class
Explanation In the above program classes A, B, and C are defined. The class Cis
derived from classes A and B. In the function main () the object of class C is declared. As
soon as the object is declared, the constructor of derived class and base classes are
executed as shown in the output.
Answer 8 b)

Void pointer

Pointers can also be declared as void type. Void pointers cannot be dereferenced without explicit
tvpe conversion. This is because being void the compiler cannot determine the size of the object
that the pointer points to.

Wild pointer

Pointers are used to store memory addresses. An improper use of pointer creates many €rrors in
the program. Hence, pointer should be handled cautiously. When pointer points to an unallocated
memory location or to data value, whose memory is de-allocated such a pointer is called as wild
pointer. The wild pointer generates garbage me:mory location and pendent reference.

this pointer

B.Tech 4" Semester Examination, 2014
Model Answer

Subject:- Paper Code:-

Sets (I) 7 (I1)

The objects are used are used to invoke the non-static member function of the class, For xample,
if p is an object of class P and get () is a member function of P, the statement p.get () is used to
call the function. The statement p.get () operates on p. In the same way if ptr is a pointer to a P
object, the function called ptr->get () operates on *ptr. However, question is, how does the
member function get () understand which p it is functioning on? C++ compiler provides get ()
with a pointer to p called this. The pointer this is transferred as an unseen parameter in all calls
to non-static member functions. The keyword this is a local variable always presents in the body
of any non-static member function.

Answer 9 a)

The C++ provides a mechanism called inline function. When a function is declared as inline, the
compiler copies the code of the function in the calling function i.e. function body is inserted in
place of function call during compilation. Passing of control between caller and callee functions is
avoided. If the function is very large, in such a case inline function is not used because the compiler
copies the contents in the called function that reduces the program execution speed. The inline
function is mostly useful when calling function is small. It is advisable to use the inline function
for only small functions. Inline mechanism increases execution performance in terms of speed.
The overhead of repetitive function calls and returning values are removed. On the other hand, the
program using inline functions needs more memc: y space. Since the inline function are copied at
every point where the function is invoked.
Following are few situations where inline function may not work.
1) The function should not be recursive.
2) Function should not contain static variables.
3) Function containing control structure statements such as switch, if, for loop etc.
4) The function main () cannot be work as inline.
The inline functions are similar to macros of C. The main limitation of with macros is that they
are not functions and errors are not checked at the time of compilation. The function offers better
type testing and do not contain side effect as present in macros.

Answer 9 b)

An lvalue is an object locator. An expression points an object. An example of an /value expression
is *k that resulting to a non-null pointer. A changeable /value is an identifier or expression that
relates to an object that can be accessed and suitably modified in computer memory. A const
pointer to a constant is not a changeable Mvalue. A pointer to a constant can be altered (its
dereferenced value not). An Ivalue could suitably stand on the left (the assignment side) of an
assignment statement. Now, only changeabie /value can legally stand on the left of an assignment

el
«” !
S
o

B.Tech 4™ Semester Examination, 2014
Model Answer

Subject:- Paper Code:-

Sets (I) / (IT)

statement. For example, Suppose x and y are nonconstant integer identifiers with appropriate
allocated memory. Their lvalue are changeable. The following expressions are legal.

X=1

Y = x + y are legal expressions.

Rvalues (Right values) v
The statement x + y is not a lvalue, x +y = z is invalid because the expression on the left is not

related to a variable. Such expressions are often called rvalues.

